
Modeling and analyzing solar heating plants to predict thermal performance

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Henrik Pieper, Brian Elmegaard, Anders Dyrelund, Stefan Wuust Christensen, Christoffer Ernst Lythcke-Jørgensen

In cooperation with Rambøll and OE3i

DTU Mechanical Engineering

Department of Mechanical Engineering

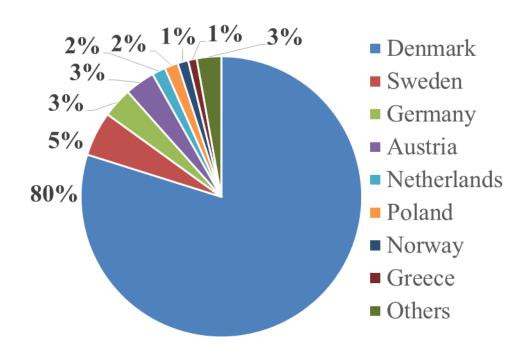
Agenda

- I. Introduction
 - Solar heating plants in EU
 - Aim of the study

II. Method

- Reference system
- Modeling approach

III. Results


- Validation model
- Prediction model
- Optimization

IV. Discussion

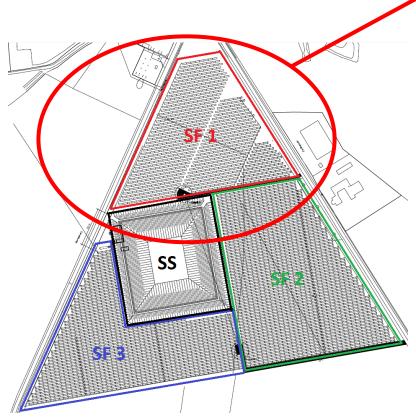
I. Installed solar collector area in Europe until 2015

Solar heating plants higher than 700 $\rm kW_{th}$

Facts of solar heating plants

- >1,000,000 m² in EU
- >800,000 m² in DK
- 1.3 mio. m² in DK expected until end of 2016
- 29 out of 31 plants
 ≥ 10,000 m² in DK
- Economy of scale: build large
 - 156,694 m² (110 MW_{th})
 planned in Silkeborg

I. Aim of the study

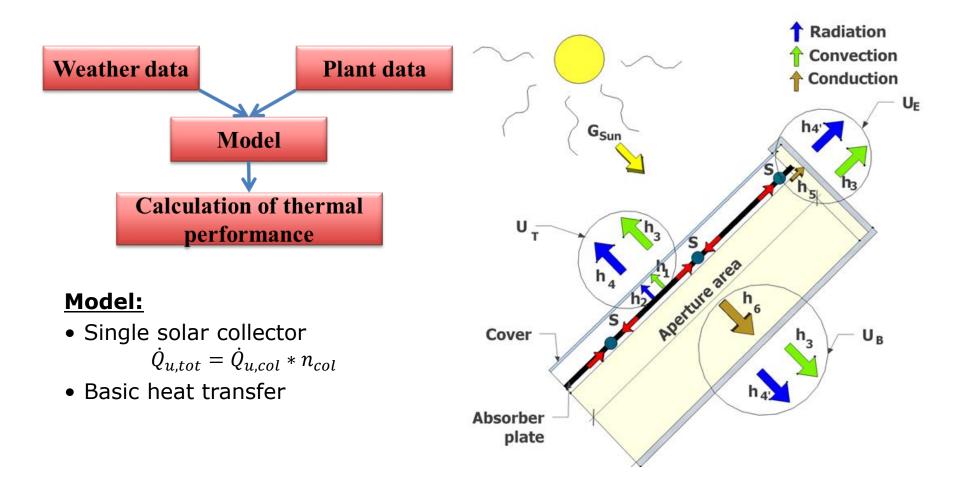

Model development

- Predict thermal performance of solar heating plants
- Based on weather data
 - solar irradiation, ambient temperature and wind speed
- Efficient and flexible
- Compatible with energy system optimization tools
 - e.g. Mentor Planner

Overall aim: optimize energy system

II. Reference System: Gram

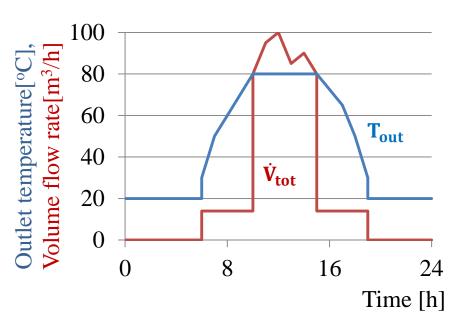
Facts of solar field 1


- 7 MW_{th} 10,073 m²
- 802 solar collectors (Arcon HT-SA)
- 13 collectors in a row
- 15 % solar fraction in DH system

Available data

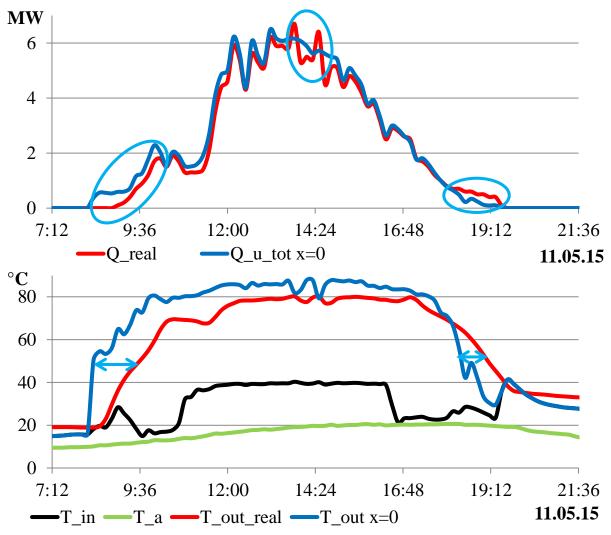
- 08.05. 29.09.2015
- 10 min time step
 - $\dot{Q}_{u,tot}$ Total energy output
 - \dot{V}_{tot} Total volume flow rate
 - T_{in} Inlet temperature
 - T_{out} Outlet temperature
 - T_a Ambient temperature
 - G_{sun} Solar irradiation on collector tilt

II. Modeling approach


II. Modeling approach

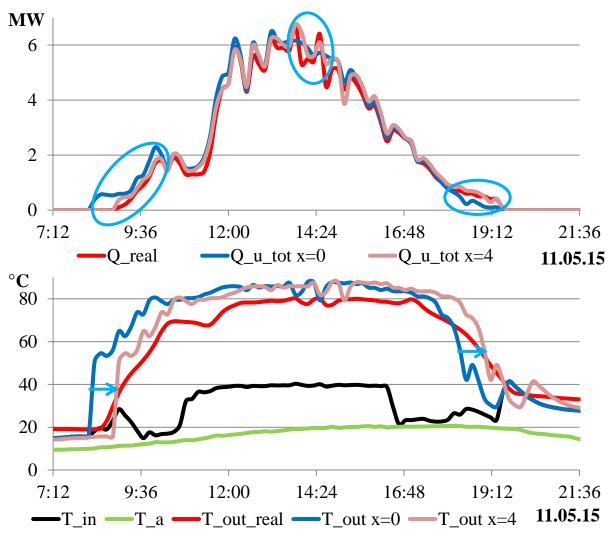
Validation model

- Inputs: V_{tot}, T_{in}, G_{Sun}, T_a, u_{wind}
- Outputs: $\dot{Q}_{u,tot}$, T_{out}
- Representation of system inertia
 - Constant time delay x for T_{out}
 - Variation of delay
 - 0-70 min
 - Best fit at 40 min (x=4)
- Modeling of entire period
 - Comparison with measurements


Prediction model

- Inputs: V_{tot}, C_{in}, G_{Sun}, T_a, u_{wind}
- Instead: \dot{V}_{min} , $T_{out,max}$, $T_{in,24h}$, $T_{in,24h,real}$
- Outputs: $\dot{Q}_{u,tot}$, T_{out} , \dot{V}_{tot} , T_{in}

III.Validation model - no time delay

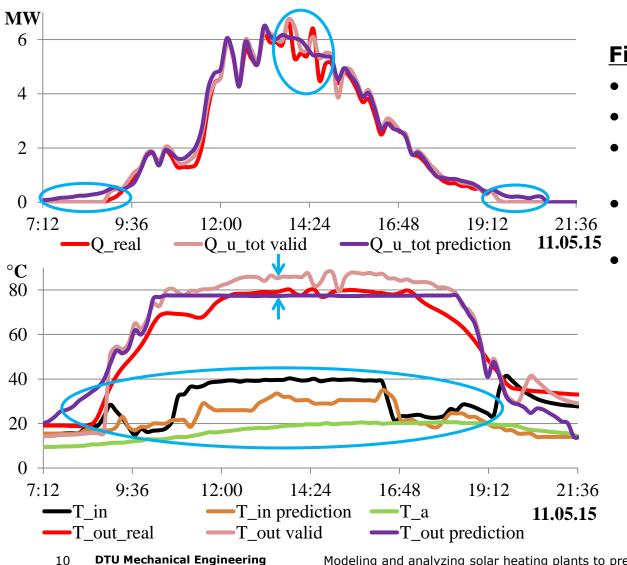


<u>Findings</u>

- Good representation
- Too high in the morning
- Too low in the evening
- Not all peaks
- Temperature increases and decreases too early

III.Validation model – 40 min time delay

Findings


- Good representation
- Too high in the morning
- Too low in the evening
- Not all peaks
- Temperature increases and decreases too early

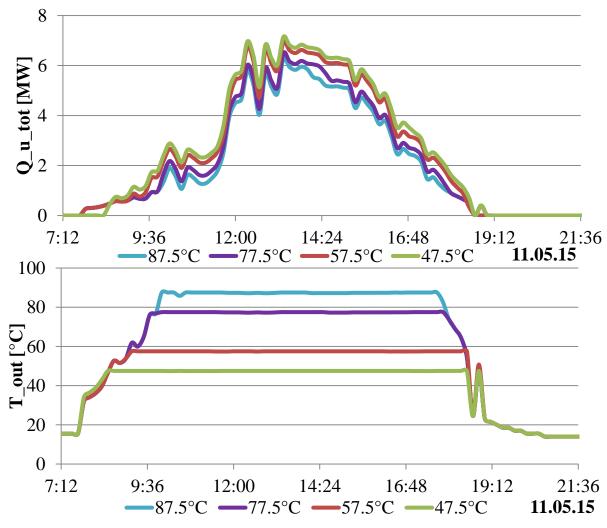
Time delay of 40 min

- Morning and evening better represented
- Peaks better represented

R ²	↓ <i>Q</i> _{<i>u</i>,tot}	T _{out}
x=0	0.980	0.565
x=4	0.989	0.915

III.Prediction model

<u>Findings</u>


- Good representation
- Not all peaks
- Morning/evening slightly too high energy output
- Lower max. temperature than validated model
- Inlet temperature follows similar trend (beginning of period)

III.Optimization

DTU Mechanical Engineering

11

Approach

• Vary T_{out,max}

<u>Findings</u>

T _{out} [°C]	Q_sum [MWh]	η [%]
47.5	40	63
57.5	38	59
77.5	33	52
87.5	31	48
G_sun	63	

- Optimize energy output based on demand
- Higher efficiency at lower temperature

DTU

IV.Discussion

<u>Summary</u>

- Solar heating plant modelled by single collector
- Considering system inertia is important
- Prediction of thermal performance possible
- Advantages for energy system
 - Lower heat production
 - Higher flexibility
 - Optimization of flow temperature

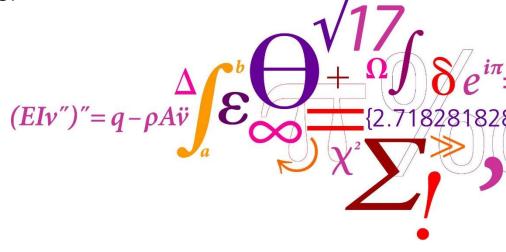
Challenges

- Prediction of solar irradiation (cloud covers)
- Improve system inertia representation based on irradiation, volume flow rate
- Apply model to other solar heating plants

Thank you for your attention

Questions?

References

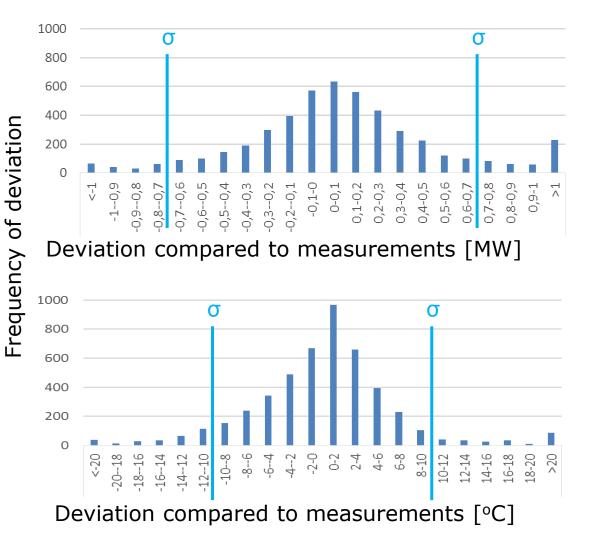

- Solar District Heating, 2016. Ranking List of European Large Scale Solar Heating Plants
- Danish District Heating Association, 2016. Andelen af solvarme er eksploderet.
- Dyrelund, A., 2013. Economy of Scale the Secret of Sustainable Energy Solutions
- Global Solar Thermal Energy Council, 2016. Denmark: Arcon-Sunmark Announces Silkeborg Solar Plant Development
- State of Green, 2009. Gram District Heating
- Rambøll, 2015. Gram Fjernvarme Sol 2

Modeling and analyzing solar heating plants to predict thermal performance

2nd International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 27-28 September 2016

Henrik Pieper, Brian Elmegaard, Anders Dyrelund, Stefan Wuust Christensen, Christoffer Ernst Lythcke-Jørgensen

In cooperation with Rambøll and OE3i



DTU Mechanical Engineering

Department of Mechanical Engineering

III.Prediction model – deviation \geq 1 MW

Findings

- Good distribution for entire period (4774 data points)
- Some extreme values

• Measurement error

-
$$\dot{V}_{tot} \approx 0.2$$
 %

$$-G_{sun} \approx 5\%$$