

Riga Technical University Faculty of Power and Electrical Engineering Institute of Energy Systems and Environment www.videszinatne.lv

Some aspects of low-temperature district heating systems: optimisation of retrofitting of historic buildings and role of solar energy source

> Dagnija Blumberga, Dr.habil.sc.ing. Riga, Latvia 26.09.2016.

Problem statement

CONTENT

1. HISTORIC BUILDING RETROFITTING

2. SOLAR ENERGY IMPLEMENTATION IN AN EXISTING DISTRICT HEATING SYSTEM IN LATVIA – case study

HISTORIC BUILDING RETROFITTING

- High density of historic buildings in cities with rich cultural heritage
- Every building has a unique set of elements

PROBLEMS ASSOCIATED WITH HISTORIC BUILDING RENOVATION

Different building construction

- □ Facades with cultural heritage
- □ Facades with no significant cultural heritage
- Inapropriate heating system
 - □ Inappropriate heating system installation
 - Mixed type heating system in different areas of a building one and two pipe heating systems simultaniously

METHODOLOGY

- Historic building energy model according to the ISO 13790:2008
- Modeling different possible solutions
- Defining necessary heating loads

CASE STUDY. DESCRIPTION OF THE BUILDING

Туре	Office building
Year of commissioning, year	1883
Indoor temperature in heating season, °C	20
Heated space, m ²	5084.50

BUILDING ANALYSIS

- Climatic data for Riga 203 heating days, 0 °C standard heating season temperature, 20 °C average indoor temperature during heating season;
- Specific heat energy consumption 119.25 kWh/m²;
- Heating power at 0 °C 124.5 kW, heating power at -20 °C 295.6 kW

Construction	U-value, W/m ² K
Walls (different wall thickness)	0,73 – 1,30
Roof (partly insulated with 30 cm of loose wool)	0,12 – 0,97
Doors (partly retrofitted)	1,8 – 3,0
Basement (partly heated, partly unheated basement)	0,32 - 0,60
Windows (partly retrofitted)	1,8 – 2,4
Radiator count	377 (843,8 m²)

POSSIBLE SOLUTIONS

- Replacement of windows no changes to the external appearance of the building
- Complete insulation of roof no changes to the external appearance of the building
- Insulation of unheated basement
- External insulation of building facade elements without any cultural significance
- Internal insulation of building facade elements with cultural significance
- Technical servicing of existing building heating system

DEFINING HEATING SYSTEM

Existing

- □ Old and outworn
- Unequal heat energy distribution

Retrofit

RTU VASSI

- Technical servicing
- Replacement of old radiators with new (with thermostatic valves)
- Infrared heating (tubes in walls)

POTENTIAL SCENARIO ANALYSIS

1. scenario

- □ Roof insulation;
- Replacement of windows
- □ Heating system technical servicing (+ heating element replacement)

2. scenario

- □ Insulation of roof
- Replacement of windows
- □ Heating system technical servicing (+ heating element replacement)
- □ Insulation of walls from the outside (without cultural significance)

3. scenario

- Insulation of roof
- Replacement of windows
- Heating system technical servicing (+heating element change)
- □ Insulation of walls from the outside (without cultural significance)
- Insulation of culturally significant walls from the inside

RESULTS (I)

RESULTS (II)

Energy source

Analysis of 8 scenarious with integration of Solar collectors and accumulation

RESULTS (I) - scenarios

Figure 2. Heat demand and produced amount of heat in solar DHS for various scenarios

RESULTS (II) – SOLAR FRACTION

In solar fraction calculation it was taken into account that after energy efficiency measure (EEM) implementation total heat demand will be reduced.

RESULTS – COLLECTOR EFFICIENCY (III)

- Higher collector efficiency allows producing more energy.
- However, collector efficiency is affected by technological parameters, climate and operation conditions etc.

RESULTS (IV) – SPECIFIC COSTS

For larger system's operation time, specific costs are lower.

- Specific costs for larger SDH systems are lower
- S1 no storage system implementation costs

DISCUSSION

- Energy efficiency improvement measures is possible to optimise and reach minimum of specific costs.
- Specific costs of solar energy use depend from different parameters (efficiency both collectors and consumers, lifetime of solar collectors) and it is possible to find optimum too

More info Institute of Energy Systems and Environment Riga Technical University

<u>info@videszinatne.lv</u> www.videszinatne.lv

