Melissa Carina Gabert

Waste and Energy System Integration

- The Role of Refused Derived Fuel in

Future District Heating

AALBORG UNIVERSITY DENMARK 4th Generation District Heating Technologies and Systems

1.1. Problem 占古 4th Generation District Heating **Technologies and Systems** Ø Today 2035 2020 Re Inci сус nera Incin Recy tion lin Rec Inc erat cling 35% yclin ine on 50% g 65% rati 50% 0...

AALBORG UNIVERSITY DENMARK

1.2 Problem

占古

 \rightarrow Less local waste available for increasing district heating demands

 \rightarrow Free incineration capacity

 \rightarrow Electricity price fluctuations

2.1. Approach

2.2. Approach

→System design in 2020 & 2035?

→Thermal storage yes/no?

 \rightarrow RDF boilers competitive to biomass boilers?

4.1. System Analysis 2035

Business Economic Modelling

AALBORG UNIVERSITY DENMARK

4.2. System Analysis 2035 **Business Economic Modelling** 600 550 Priorities (NPC) 500 450 400 4th Generation District Heating 350 **Technologies and Systems** 30 250 200 15 Mon 01/01/35 Thu 01/02/35 Thu 01/03/35 Sun 01/04/35 Tue 01/05/35 Fri 01/06/35 Sun 01/07/35 Wed 01/08/35 Sat 01/09/35 Mon 01/10/35 Thu 01/11/35 Sat 01/12/35 Tue 01/01/36 - RDF Boiler Heatpump 110 100 9 Heat [MW] 8 RDF boiler Wed 01/08/35 Sat 01/09/35 Thu 01/02/35 Tue 01/05/35 Sun 01/07/35 Thu 01/11/35 Sat 01/12/35 Mon 01/01/35 Thu 01/03/35 Sun 01/04/35 Fri 01/06/35 Mon 01/10/35 Tue 01/01/38 Heat pump Socio Economic Modelling Heat consumption 400 Priorities (NPC) 35 300 250 200 150 Mon 01/01/36 Thu 01/02/35 Thu 01/03/36 Sup 01/04/35 Tue 01/05/36 Eri 01/06/35 Sup 01/07/3 Wed 01/08/35 Sat 01/09/34 Sat 01/12/36 Tue 01/01/3/ 110 100 90 80 70 60 50 Heat [MW] 20 Tue 01/01/36

AALBORG UNIVERSITY DENMARK

5.1. Economic Analysis 2035

5.2. Economic Analysis 2035

6.1. Conclusion

- System design:
 - Business economics: 25% HP + 50% RDF boiler capacity + 61,000 m³ store
 - Socio economics: 25% HP + 25% RDF boiler capacity + 550,000 m³ store

→ RDF has an important role in energy systems in short- and long-term
→ Scenarios including thermal storage appear to be more attractive

6.2. Conclusion

Heating

\rightarrow RDF is competitive to woodchip boilers in all analysed scenarios

2nd International Conference on Smart Energy Systems and AALBORG UNIVERSITY 4th Generation District Heating, Aalborg, 27-28 September 2016 DENMARK

Thank you for your attention.

Open Questions

- Enough RDF available in Europe for Denmark, Sweden, Norway, Germany?
- seller's market: maximum RDF import price
- reserve capacity
- PSO

