International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 25-26 August 2015

Smart energy systems applied at urban level: the case of the municipality of Bressanone-Brixen

Introduction Case study - Bressanone

- North of Italy. Region: Trentino-Alto Adige
- 20,000 inhabitants
- Alpine climate
- Joined Covenant of Mayors in 2013
- Sustainable Energy Action Plan (SEAP) developed by EURAC

Study purpose

- Analyse current energy system including district heating network
- Study solutions to increase overall system efficiency
- Develop future scenarios with high PV penetration
- Compare different peak shaving methods: electric vs thermal storage
- Best technology mix in terms of emissions and annual costs

AALBORG UNIVERSITY Denmark

Methodology Reference scenario -assumption

The municipality is handled as a single node

theoretical study

The use of grid balances production surplus and deficits, (hence reducing the need for storage in the future). However, there might be the situation in which the closest regions are in the same condition, with high photovoltaics (PV) electricity production during the central hours of the day

In order to achieve the objectives of the covenant of mayors the single municipalities have to carry out future scenarios studies and practical interventions to be more independent from the import and from the grid.

Storage systems required

Methodology Reference scenario – electricity baseline

Methodology Reference scenario – heat baseline

AALBORG UNIVERSITY Denmark

Methodology Reference scenario - energyPLAN

Reference scenario created and validated with energyPLAN

(112.5 kt CO₂ emissions SEAP document)

	Variables		values	Units
Main input	Electricity total demand		110.13	GWh/year
		Electricity import	71.26	GWh/year
		Electricity export	0	GWh/year
	Heat demand		161.51	GWh/year
		DH demand	85.03	GWh/year
		Individual demand	76.48	GWh/year
Main output	RES electricity prod.		11.06	GWh/year
	RES share of elec. prod.		10	%
	CO2-emission		113	kt
	TOTAL ANNUAL COSTS		60000	k€

Results PV potential and PV scenario

	The PV Potential of South Tyrol: An Intelligent Use of Space (D. Moser, D. Vettorato, R. Vaccaro, M. Del Buono, and W. Sparber)	Solar tirol project	ette solare globale Bå Golaryeni Golaryeni Solaryeni Solaryeni Solaryeni Solaryeni Solaryeni Solaryeni Solaryeni Solaryeni Solaryeni Solaryeni Solaryeni Solaryeni
PV potential Brixen	53 MW	55 MW	

1

AALBORG UNIVERSITY

DENMARK

Results The model

Thermal demand analysis

Why a different model?

To study the impact of additional parameters:

- Initial content of thermal storage (I_{STO,DH})
- Thermal storage losses (L_{STO,DH})
- Charging and discharging power of the thermal storage (P_{STO,DH})

Model is composed by three blocks:

- Thermal demand analysis
- Excess electricity analysis
- Electricity demand analysis

Results The model

Electricity demand analysis

Priority:

Results The deterministic approach

AALBORG UNIVERSITY DENMARK

Results The optimization approach

Results The optimization approach

Results The optimization approach

AALBORG UNIVERSITY DENMARK

Total annual costs [k€]

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015

[kwh]

EUR research

Results The optimization approach: P1

4DH He Generation District Heating Technologies and Systems

Conclusions

- The case study of Bressanone-Brixen has been analysed starting from the creation of the **reference scenario** in energyPLAN.
- A model to describe the interactions between PV, large heat pumps and seasonal thermal storage has been developed.
- A deterministic approach has been used to compare different peak shaving solutions: thermal (analysed with the created model) and electric storage (inspected with energyPLAN). The two scenarios have been created varying only the installed capacity of PV and calculating the size of the others variables in order to cover the entire excess electricity production without exchanges with the grid. For this reason the two scenarios describe the **extreme cases**.
- A **Multi Objective Evolutionary Algorithm** has been used to study the best intermediate solutions of the "PV + thermal storage" scenario, finding out the pareto front of best technology mix.
- A solution on the pareto front (P1) has been chosen as solution that permits to save more annual CO₂ emissions without increasing the annual costs of the energy system compared to the reference scenario.
- Futher studies could focus on the analysis of the best hybrid solutions between electric and thermal storage systems.

Thanks for the attention!

MatteoGiacomo.Prina@eurac.edu

